## viff

### changeset 588:7c14124ca29e

Removed trailing whitespace.
author Martin Geisler Thu, 20 Mar 2008 00:02:34 +0100 bc6db28e18d0 b1397f54a28c viff/matrix.py 1 files changed, 10 insertions(+), 10 deletions(-) [+]
line diff
```     1.1 --- a/viff/matrix.py	Wed Mar 19 23:29:38 2008 +0100
1.2 +++ b/viff/matrix.py	Thu Mar 20 00:02:34 2008 +0100
1.3 @@ -66,7 +66,7 @@
1.4          """Allows matrix entry assignment using C{[,]}.
1.5
1.6          The assignment works as follows:
1.7 -
1.8 +
1.9          >>> M = Matrix(2, 2)
1.10          >>> M[0, 1] = 42
1.11          >>> print M
1.12 @@ -83,7 +83,7 @@
1.13          """Allows matrix entry access using C{[, ]}.
1.14
1.15          The access works as follows:
1.16 -
1.17 +
1.18          >>> M = Matrix([[1, 2], [3, 4]])
1.19          >>> print M[1,1]
1.20          4
1.21 @@ -121,7 +121,7 @@
1.22                  for j in range(0, self.n):
1.23                      result[i, j] = self[i, j] + other
1.24              return result
1.25 -
1.26 +
1.27          result = Matrix(self.m, self.n)
1.28          for i in range(0, self.m):
1.29              for j in range(0, self.n):
1.30 @@ -143,7 +143,7 @@
1.31              for j in range(0, self.n):
1.32                  result[i, j] = other + self[i, j]
1.33          return result
1.34 -
1.35 +
1.36      def __mul__(self, other):
1.37          """Matrix multiplication.
1.38
1.39 @@ -171,7 +171,7 @@
1.40          @param other: The matrix or element to multiply with this one.
1.41          @return: The product.
1.42          """
1.43 -
1.44 +
1.45          if not isinstance(other, Matrix):
1.46              result = Matrix(self.m, self.n)
1.47              for i in range(0, self.m):
1.48 @@ -183,7 +183,7 @@
1.49          if self.n != other.m:
1.50              raise ValueError('Matrix dimensions do not match for '
1.51                               'multiplication')
1.52 -
1.53 +
1.54          result = Matrix(self.m, other.n)
1.55          for i in range(0, self.m):
1.56              for j in range(0, other.n):
1.57 @@ -249,15 +249,15 @@
1.58
1.59      def determinant(mat):
1.60          """Calculates the determinant of a matrix.
1.61 -
1.62 +
1.63          @param mat: A square matrix.
1.64          @return: The determinant of the matrix.
1.65          """
1.66          if mat.m == 1:
1.67              return mat[0, 0]
1.68          if mat.m == 2:
1.69 -            return mat[0, 0] * mat[1,1] - mat[1, 0] * mat[0, 1]
1.70 -
1.71 +            return mat[0, 0] * mat[1, 1] - mat[1, 0] * mat[0, 1]
1.72 +
1.73          sum = 0
1.74          for k in range(mat.m):
1.75              sub = Matrix(mat.m-1, mat.n-1)
1.76 @@ -269,7 +269,7 @@
1.77                      sub[i-1, j-1] = mat[i, j]
1.78              sum += mat[k, 0] * (-1)**k * sub.determinant()
1.79          return sum
1.80 -
1.81 +
1.82  def hyper(n, field):
1.83      """Makes a hyper-invertible square matrix.
1.84
```