changeset 1069:53e67a17c67d

Test for AES ByteSub.
author Marcel Keller <mkeller@cs.au.dk>
date Mon, 22 Dec 2008 15:39:41 +0100
parents 33129a6f532a
children d2d9d638364b
files viff/test/rijndael.py viff/test/test_aes.py
diffstat 2 files changed, 464 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/viff/test/rijndael.py	Mon Dec 22 15:39:41 2008 +0100
@@ -0,0 +1,376 @@
+"""
+A pure python (slow) implementation of rijndael with a decent interface
+
+To include -
+
+from rijndael import rijndael
+
+To do a key setup -
+
+r = rijndael(key, block_size = 16)
+
+key must be a string of length 16, 24, or 32
+blocksize must be 16, 24, or 32. Default is 16
+
+To use -
+
+ciphertext = r.encrypt(plaintext)
+plaintext = r.decrypt(ciphertext)
+
+If any strings are of the wrong length a ValueError is thrown
+"""
+
+# ported from the Java reference code by Bram Cohen, April 2001
+# this code is public domain, unless someone makes 
+# an intellectual property claim against the reference 
+# code, in which case it can be made public domain by 
+# deleting all the comments and renaming all the variables
+
+import copy
+import string
+
+shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
+          [[0, 0], [1, 5], [2, 4], [3, 3]],
+          [[0, 0], [1, 7], [3, 5], [4, 4]]]
+
+# [keysize][block_size]
+num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}
+
+A = [[1, 1, 1, 1, 1, 0, 0, 0],
+     [0, 1, 1, 1, 1, 1, 0, 0],
+     [0, 0, 1, 1, 1, 1, 1, 0],
+     [0, 0, 0, 1, 1, 1, 1, 1],
+     [1, 0, 0, 0, 1, 1, 1, 1],
+     [1, 1, 0, 0, 0, 1, 1, 1],
+     [1, 1, 1, 0, 0, 0, 1, 1],
+     [1, 1, 1, 1, 0, 0, 0, 1]]
+
+# produce log and alog tables, needed for multiplying in the
+# field GF(2^m) (generator = 3)
+alog = [1]
+for i in xrange(255):
+    j = (alog[-1] << 1) ^ alog[-1]
+    if j & 0x100 != 0:
+        j ^= 0x11B
+    alog.append(j)
+
+log = [0] * 256
+for i in xrange(1, 255):
+    log[alog[i]] = i
+
+# multiply two elements of GF(2^m)
+def mul(a, b):
+    if a == 0 or b == 0:
+        return 0
+    return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
+
+# substitution box based on F^{-1}(x)
+box = [[0] * 8 for i in xrange(256)]
+box[1][7] = 1
+for i in xrange(2, 256):
+    j = alog[255 - log[i]]
+    for t in xrange(8):
+        box[i][t] = (j >> (7 - t)) & 0x01
+
+B = [0, 1, 1, 0, 0, 0, 1, 1]
+
+# affine transform:  box[i] <- B + A*box[i]
+cox = [[0] * 8 for i in xrange(256)]
+for i in xrange(256):
+    for t in xrange(8):
+        cox[i][t] = B[t]
+        for j in xrange(8):
+            cox[i][t] ^= A[t][j] * box[i][j]
+
+# S-boxes and inverse S-boxes
+S =  [0] * 256
+Si = [0] * 256
+for i in xrange(256):
+    S[i] = cox[i][0] << 7
+    for t in xrange(1, 8):
+        S[i] ^= cox[i][t] << (7-t)
+    Si[S[i] & 0xFF] = i
+
+# T-boxes
+G = [[2, 1, 1, 3],
+    [3, 2, 1, 1],
+    [1, 3, 2, 1],
+    [1, 1, 3, 2]]
+
+AA = [[0] * 8 for i in xrange(4)]
+
+for i in xrange(4):
+    for j in xrange(4):
+        AA[i][j] = G[i][j]
+        AA[i][i+4] = 1
+
+for i in xrange(4):
+    pivot = AA[i][i]
+    if pivot == 0:
+        t = i + 1
+        while AA[t][i] == 0 and t < 4:
+            t += 1
+            assert t != 4, 'G matrix must be invertible'
+            for j in xrange(8):
+                AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
+            pivot = AA[i][i]
+    for j in xrange(8):
+        if AA[i][j] != 0:
+            AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
+    for t in xrange(4):
+        if i != t:
+            for j in xrange(i+1, 8):
+                AA[t][j] ^= mul(AA[i][j], AA[t][i])
+            AA[t][i] = 0
+
+iG = [[0] * 4 for i in xrange(4)]
+
+for i in xrange(4):
+    for j in xrange(4):
+        iG[i][j] = AA[i][j + 4]
+
+def mul4(a, bs):
+    if a == 0:
+        return 0
+    r = 0
+    for b in bs:
+        r <<= 8
+        if b != 0:
+            r = r | mul(a, b)
+    return r
+
+T1 = []
+T2 = []
+T3 = []
+T4 = []
+T5 = []
+T6 = []
+T7 = []
+T8 = []
+U1 = []
+U2 = []
+U3 = []
+U4 = []
+
+for t in xrange(256):
+    s = S[t]
+    T1.append(mul4(s, G[0]))
+    T2.append(mul4(s, G[1]))
+    T3.append(mul4(s, G[2]))
+    T4.append(mul4(s, G[3]))
+
+    s = Si[t]
+    T5.append(mul4(s, iG[0]))
+    T6.append(mul4(s, iG[1]))
+    T7.append(mul4(s, iG[2]))
+    T8.append(mul4(s, iG[3]))
+
+    U1.append(mul4(t, iG[0]))
+    U2.append(mul4(t, iG[1]))
+    U3.append(mul4(t, iG[2]))
+    U4.append(mul4(t, iG[3]))
+
+# round constants
+rcon = [1]
+r = 1
+for t in xrange(1, 30):
+    r = mul(2, r)
+    rcon.append(r)
+
+del A
+del AA
+del pivot
+del B
+del G
+del box
+del log
+del alog
+del i
+del j
+del r
+del s
+del t
+del mul
+del mul4
+del cox
+del iG
+
+class rijndael:
+    def __init__(self, key, block_size = 16):
+        if block_size != 16 and block_size != 24 and block_size != 32:
+            raise ValueError('Invalid block size: ' + str(block_size))
+        if len(key) != 16 and len(key) != 24 and len(key) != 32:
+            raise ValueError('Invalid key size: ' + str(len(key)))
+        self.block_size = block_size
+
+        ROUNDS = num_rounds[len(key)][block_size]
+        BC = block_size / 4
+        # encryption round keys
+        Ke = [[0] * BC for i in xrange(ROUNDS + 1)]
+        # decryption round keys
+        Kd = [[0] * BC for i in xrange(ROUNDS + 1)]
+        ROUND_KEY_COUNT = (ROUNDS + 1) * BC
+        KC = len(key) / 4
+
+        # copy user material bytes into temporary ints
+        tk = []
+        for i in xrange(0, KC):
+            tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
+                (ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))
+
+        # copy values into round key arrays
+        t = 0
+        j = 0
+        while j < KC and t < ROUND_KEY_COUNT:
+            Ke[t / BC][t % BC] = tk[j]
+            Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
+            j += 1
+            t += 1
+        tt = 0
+        rconpointer = 0
+        while t < ROUND_KEY_COUNT:
+            # extrapolate using phi (the round key evolution function)
+            tt = tk[KC - 1]
+            tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^  \
+                     (S[(tt >>  8) & 0xFF] & 0xFF) << 16 ^  \
+                     (S[ tt        & 0xFF] & 0xFF) <<  8 ^  \
+                     (S[(tt >> 24) & 0xFF] & 0xFF)       ^  \
+                     (rcon[rconpointer]    & 0xFF) << 24
+            rconpointer += 1
+            if KC != 8:
+                for i in xrange(1, KC):
+                    tk[i] ^= tk[i-1]
+            else:
+                for i in xrange(1, KC / 2):
+                    tk[i] ^= tk[i-1]
+                tt = tk[KC / 2 - 1]
+                tk[KC / 2] ^= (S[ tt        & 0xFF] & 0xFF)       ^ \
+                              (S[(tt >>  8) & 0xFF] & 0xFF) <<  8 ^ \
+                              (S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
+                              (S[(tt >> 24) & 0xFF] & 0xFF) << 24
+                for i in xrange(KC / 2 + 1, KC):
+                    tk[i] ^= tk[i-1]
+            # copy values into round key arrays
+            j = 0
+            while j < KC and t < ROUND_KEY_COUNT:
+                Ke[t / BC][t % BC] = tk[j]
+                Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
+                j += 1
+                t += 1
+        # inverse MixColumn where needed
+        for r in xrange(1, ROUNDS):
+            for j in xrange(BC):
+                tt = Kd[r][j]
+                Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
+                           U2[(tt >> 16) & 0xFF] ^ \
+                           U3[(tt >>  8) & 0xFF] ^ \
+                           U4[ tt        & 0xFF]
+        self.Ke = Ke
+        self.Kd = Kd
+
+    def encrypt(self, plaintext):
+        if len(plaintext) != self.block_size:
+            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
+        Ke = self.Ke
+
+        BC = self.block_size / 4
+        ROUNDS = len(Ke) - 1
+        if BC == 4:
+            SC = 0
+        elif BC == 6:
+            SC = 1
+        else:
+            SC = 2
+        s1 = shifts[SC][1][0]
+        s2 = shifts[SC][2][0]
+        s3 = shifts[SC][3][0]
+        a = [0] * BC
+        # temporary work array
+        t = []
+        # plaintext to ints + key
+        for i in xrange(BC):
+            t.append((ord(plaintext[i * 4    ]) << 24 |
+                      ord(plaintext[i * 4 + 1]) << 16 |
+                      ord(plaintext[i * 4 + 2]) <<  8 |
+                      ord(plaintext[i * 4 + 3])        ) ^ Ke[0][i])
+        # apply round transforms
+        for r in xrange(1, ROUNDS):
+            for i in xrange(BC):
+                a[i] = (T1[(t[ i           ] >> 24) & 0xFF] ^
+                        T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
+                        T3[(t[(i + s2) % BC] >>  8) & 0xFF] ^
+                        T4[ t[(i + s3) % BC]        & 0xFF]  ) ^ Ke[r][i]
+            t = copy.copy(a)
+        # last round is special
+        result = []
+        for i in xrange(BC):
+            tt = Ke[ROUNDS][i]
+            result.append((S[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
+            result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
+            result.append((S[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
+            result.append((S[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
+        return string.join(map(chr, result), '')
+
+    def decrypt(self, ciphertext):
+        if len(ciphertext) != self.block_size:
+            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(ciphertext)))
+        Kd = self.Kd
+
+        BC = self.block_size / 4
+        ROUNDS = len(Kd) - 1
+        if BC == 4:
+            SC = 0
+        elif BC == 6:
+            SC = 1
+        else:
+            SC = 2
+        s1 = shifts[SC][1][1]
+        s2 = shifts[SC][2][1]
+        s3 = shifts[SC][3][1]
+        a = [0] * BC
+        # temporary work array
+        t = [0] * BC
+        # ciphertext to ints + key
+        for i in xrange(BC):
+            t[i] = (ord(ciphertext[i * 4    ]) << 24 |
+                    ord(ciphertext[i * 4 + 1]) << 16 |
+                    ord(ciphertext[i * 4 + 2]) <<  8 |
+                    ord(ciphertext[i * 4 + 3])        ) ^ Kd[0][i]
+        # apply round transforms
+        for r in xrange(1, ROUNDS):
+            for i in xrange(BC):
+                a[i] = (T5[(t[ i           ] >> 24) & 0xFF] ^
+                        T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
+                        T7[(t[(i + s2) % BC] >>  8) & 0xFF] ^
+                        T8[ t[(i + s3) % BC]        & 0xFF]  ) ^ Kd[r][i]
+            t = copy.copy(a)
+        # last round is special
+        result = []
+        for i in xrange(BC):
+            tt = Kd[ROUNDS][i]
+            result.append((Si[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
+            result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
+            result.append((Si[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
+            result.append((Si[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
+        return string.join(map(chr, result), '')
+
+def encrypt(key, block):
+    return rijndael(key, len(block)).encrypt(block)
+
+def decrypt(key, block):
+    return rijndael(key, len(block)).decrypt(block)
+
+def test():
+    def t(kl, bl):
+        b = 'b' * bl
+        r = rijndael('a' * kl, bl)
+        assert r.decrypt(r.encrypt(b)) == b
+    t(16, 16)
+    t(16, 24)
+    t(16, 32)
+    t(24, 16)
+    t(24, 24)
+    t(24, 32)
+    t(32, 16)
+    t(32, 24)
+    t(32, 32)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/viff/test/test_aes.py	Mon Dec 22 15:39:41 2008 +0100
@@ -0,0 +1,88 @@
+# Copyright 2007, 2008 VIFF Development Team.
+#
+# This file is part of VIFF, the Virtual Ideal Functionality Framework.
+#
+# VIFF is free software: you can redistribute it and/or modify it
+# under the terms of the GNU Lesser General Public License (LGPL) as
+# published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# VIFF is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
+# Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with VIFF. If not, see <http://www.gnu.org/licenses/>.
+
+"""Tests for viff.aes."""
+
+
+from viff.test.util import RuntimeTestCase, protocol
+
+from viff.field import GF256
+from viff.runtime import gather_shares, Share
+from viff.aes import bit_decompose, AES
+
+from viff.test.rijndael import S
+
+
+__doctest__ = ["viff.aes"]
+
+
+class BitDecompositionTestCase(RuntimeTestCase):
+    """Test GF256 bit decomposition."""
+
+    def verify(self, runtime, results, expected_results):
+        self.assert_type(results, list)
+        opened_results = []
+
+        for result, expected in zip(results, expected_results):
+            self.assert_type(result, Share)
+            opened = runtime.open(result)
+            opened.addCallback(self.assertEquals, expected)
+            opened_results.append(opened)
+        
+        return gather_shares(opened_results)
+
+    @protocol
+    def test_bit_decomposition(self, runtime):
+        share = Share(runtime, GF256, GF256(99))
+        return self.verify(runtime, bit_decompose(share),
+                           [1,1,0,0,0,1,1,0])
+
+
+class AESTestCase(RuntimeTestCase):
+    def verify(self, runtime, results, expected_results):
+        self.assert_type(results, list)
+        opened_results = []
+        
+        for result_row, expected_row in zip(results, expected_results):
+            self.assert_type(result_row, list)
+            self.assertEquals(len(result_row), len(expected_row))
+
+            for result, expected in zip(result_row, expected_row):
+                self.assert_type(result, Share)
+                opened = runtime.open(result)
+                opened.addCallback(self.assertEquals, expected)
+                opened_results.append(opened)
+
+        return gather_shares(opened_results)
+
+    @protocol
+    def test_byte_sub(self, runtime):
+        aes = AES(runtime, 128)
+        results = []
+        expected_results = []
+
+        for i in range(4):
+            results.append([])
+            expected_results.append([])
+
+            for j in range(4):
+                b = 60 * i + j
+                results[i].append(Share(runtime, GF256, b))
+                expected_results[i].append(S[b])
+
+        aes.byte_sub(results)
+        self.verify(runtime, results, expected_results)